Enhancing Network Security through
Vulnerability Monitoring

Ryan Williams!, Anthony Gavazzi', and Engin Kirda'

Northeastern University, Boston MA, USA
{williams.ry,gavazzi.a,e.kirda}@northeastern.edu

Abstract. In modern cyberattacks, adversaries no longer focus solely
on individual computer systems but instead establish an initial foothold
within a company’s network, advancing through compromised assets in a
process known as lateral movement. Detecting lateral movement is chal-
lenging due to diverse infection vectors, making network traffic monitor-
ing prone to false positives and negatives. Security patches, while crucial,
can create a false sense of security. To address these issues, we introduce
PATCHCANARY, a framework for augmenting source patches for CVE-
identified vulnerabilities, allowing precise monitoring of modified func-
tions. We propose the idea of “patch and monitor” as a new approach
to vulnerability patching, enhancing lateral movement attack detection.
Evaluation on 108 CVEs across 75 real-world programs demonstrates
PATCHCANARY’s capability to automatically augment source patches for
95.9% of CVE-triggering paths while incurring a minimal 712ms compile-
time overhead, on average.

Keywords: Intrusion Detection - Network Security - Program Repair.

1 Introduction

Today, in a typical attack campaign, bad actors often have a concrete security-
sensitive objective in mind, such as accessing a top developer’s machine to steal
a popular project’s source code, accessing all of an important executive’s files,
or reading a database that stores customer credit card data [16]. While such
data breaches often start with a single compromised system in an organization,
the initial compromised asset is usually not the attackers’ ultimate destination.
Rather, after breaking into a web server, email account, employee device, or any
other low-value starting location, the attackers will move “laterally” from the
initial cyber “bridgehead” (i.e., foothold) that they have established to reach
their intended target, or to opportunistically locate a target that is of value.
Lateral movement is when attackers acquire access to an asset within a net-
work and are then able to spread their reach from that asset to others within
the same environment. Today, the initial compromise itself in an organization
seldom causes significant damage [49]. As a result, if an organization’s security
team can detect the lateral movement before the attackers are able to reach
a more security-sensitive target, the data breach can potentially be mitigated.



2 R. Williams et al.

Unfortunately, advanced attacks succeed because current security controls lack
the ability to detect the malicious activity as it moves laterally across a network.

A typical organization’s network has a security perimeter (e.g., a firewall
or a security monitor) that separates and defines what is “inside” and what
is “outside” the organization with respect to its security policies. Assets that
are outside the security perimeter are called the “top half,” and assets that
are inside are called the “lower half.” Hence, in order to compromise an asset
within the organization, an attacker must first move vertically. That is, the
initial attack needs to occur from the outside, and an asset that is inside needs
to be compromised. This direction of the attack is often called North-South
traffic. Once the attacker has established a bridgehead, however, they can now
move laterally (or horizontally) within the network to reach their objective. This
direction of the attack is often called Fast-West traffic.

In the attacks that are observed today, there are two main techniques that
a threat actor uses to move laterally [37]. The first approach consists of the
attacker stealing credentials belonging to unsuspecting users, and then using
them to move laterally within the organization. In the second approach, the
attacker deploys internal scanning to discover the network topology around the
initial established bridgehead. Typically, the attacker scans for open ports that
are listening for incoming traffic, and attempts to identify network services that
suffer from (often known) vulnerabilities. Once a vulnerable network service has
been discovered (e.g., a vulnerable internal print spool service), the attacker can
exploit this weakness to move laterally within the organization and compromise
another asset.

Because of the substantial consequences posed by data breaches, to date,
there has been much research in the area of intrusion detection and prevention.
These techniques focus on learning the characteristics of attacks and identifying
similar attacks in the future [11}/33}/39,45,/52], or learning what legitimate ac-
tivity looks like and flagging anything that does not match what was learned as
malicious [12}/13}/34]. In contrast, in this paper, we introduce a novel, deception-
based approach that aims to detect vulnerability-based lateral movement at-
tempts whenever an attacker attempts to compromise a vulnerability on a host
that has already been patched.

When new CVEs (Common Vulnerabilities and Exposures) are disclosed,
network managers and system administrators typically apply an available patch
and then stop worrying about the initial flaw so that they can focus on other
tasks at hand [30]. However, even if a vulnerability is patched and cannot be
compromised anymore during a lateral movement attempt, the attacker may
still remain undetected on the network, can wait, and can try other vectors of
compromise including other vulnerabilities that exist in the organization. Thus,
although patching a vulnerability is important for preventing a potential attack,
it does not contribute at all to the detection of any attempts to compromise the
vulnerability.

To bridge this gap and allow vulnerability patching to become a powerful
contributor to the detection of lateral movement attacks, we propose the novel



Enhancing Network Security through Vulnerability Monitoring 3

idea of “patch and monitor” as an alternative to the traditional mindset of
“patch and move on.” That is, besides patching the vulnerability, we propose an
automated approach that also inserts code to monitor the section of vulnerable
code that was disclosed by a given CVE, and that allows the network manager
or system administrator to detect when an attacker is attempting to compro-
mise this patched vulnerability as an early warning system for lateral movement
within the organization.
This work makes the following contributions:

— We develop PATCHCANARY, a novel system to semi-automatically generate
and insert monitors to augment source patches;

— We propose the novel idea of “patch and monitor” as an alternative to the
traditional “patch and move on” paradigm;

— We systematically evaluate PATCHCANARY on 75 real-world programs and
108 known CVEs. In our evaluation, we find that PATCHCANARY is able to
successfully report potential indicators of compromise on patched vulnera-
bilities while incurring minimal overhead.

2 Background

While most existing security tools focus on detecting attacks coming from outside
of a security perimeter, or monitor a specific type of artifact such as network
traffic [32}45.52], in contrast, we aim to provide a finer granularity of control over
monitoring systems and the vulnerability-based attack that is being launched.
By providing a novel approach of monitoring individual functions in a program,
we can tell how an attack is being attempted while being agnostic in terms of the
source of compromise. For example, although monitoring an Apache web server
for any anomalous traffic may provide insights on external actors attempting
to gain access to the system, monitoring specific functions in Apache that were
found to be vulnerable previously, and that were patched, provides a powerful
method to detect indicators of a larger compromise [16]. In our approach, because
we monitor individual functions, the overhead incurred is low enough (see to
consider all inputs as untrusted, regardless of source.

In practice, when patches are released, the most information provided along
with it is a changelog that states what the patch fixes. Once the patch is applied,
the effect—if any—is opaque to the user [54]. By inserting monitors, however, we
are also provided with some insight as to the efficacy of the patch that was
provided. If the patch came from an untrusted source, or if the network manager
is simply interested in knowing if the patch is actually blocking any attempted
exploitation, the monitors will provide that level of information.

While other detection systems may rely on classifying anomalous behav-
iors 7,47 that are all prone to false positives, PATCHCANARY is able to monitor
functions and their parameters concretely. Hence, we can insert monitors into
a system to look specifically for executions that pass input that is known to
trigger a vulnerability from a CVE. This also means that the incurred overhead



4 R. Williams et al.

of running systems with monitors that were inserted will be negligible compared
to running machine learning-based solutions, or an intrusion detection system
(as we show in . Because PATCHCANARY is implemented as a compiler pass
in Clang, the overhead is confined to this monitor injection step.

2.1 Threat Model

We consider two threat models that both include an attacker who intends to
compromise a high-value asset on a network. Note that this could be an attack
from outside the security perimeter, or from within the network. PATCHCANARY
operates agnostic to the source of the attack, as we intend to insert monitors that
are not only looking for potential breaches, but also internal lateral movement.

In the first threat model, an attacker armed with a standardized exploit,
scans the Internet for vulnerable devices. The attacker may use a vulnerability
search engine such as Shodan [3], or randomly scan the IP address space. The
attacker commandeers any device that replies to their probes and is vulnerable
to the exploit, which can then be used as a foothold. In the second threat model,
we consider an attacker who already has access to a node on the local network.
In this instance, the attack would be more difficult to detect with traditional
methods because there are no typical indicators of compromise. Instead, the
signal the attacker generates may resemble normal traffic if it is passing between
two trusted nodes on a network, as opposed to coming from a source outside the
security perimeter.

In both threat models, the attacker most likely does not need to directly
compromise every device; compromised devices may in turn become vectors of
infection, as it is common in Internet worms and IoT botnets. The source of the
attack is less important in our use case as we are more interested in first detecting
a signal that may indicate not only compromise, but lateral movement. With
both of our threat models, we consider any input to functions with monitors to
be untrusted. This allows for detection of malicious input even from an otherwise
trusted source.

2.2 Objectives and Goals

PATCHCANARY’s goal is to provide a foundation to augment publicly-available
patches with simple monitoring functionality. It explicitly aims to provide feed-
back on the efficacy of potentially untrusted patches, and provide early indicators
of compromise regardless of the source. The purpose is to move from the current
traditional mindset of “patch and move on” to our proposed “patch and moni-
tor”. We do not claim that PATCHCANARY captures data flows to every possible
vulnerability, nor that it cannot be bypassed in individual cases by a skilled,
motivated attacker. Its defined goal is to provide a mechanism for determining
the efficacy of applied patches, and tracking inputs to monitor for early signs of
compromise and lateral movement.



Enhancing Network Security through Vulnerability Monitoring 5

] — [

Target project Clang checker Binary with

monitors
N .

= iz

mE.

Pre-patch ASTore o @
source @ -
CVE-ID—> — —+—H—
ooo
Link refs

- diff(ASTyre , ASTpoq) Monitor
NVD source
database — |_|ﬂ
..
Post-patch ASToost

source

Fig. 1. High-level overview of PATCHCANARY’s workflow where the two inputs are
a target application and a CVE-ID corresponding to a vulnerability the analyst is
interested in generating a monitor for.

3 System Workflow and Design

3.1 System Overview

In this section, we present an overview of PATCHCANARY. Figure [1| shows an
overview of PATCHCANARY’s workflow. At a high-level, PATCHCANARY is imple-
mented as a Clang plugin to be used as a standard pass at compilation time, and
as a LibTooling-based [4] standalone tool that can be used to perform analyses
without full compilation. We chose to implement PATCHCANARY at this level
due to the flexibility that the Clang API provides for performing source-level
transformations using the underlying abstract syntax tree (AST).

Functionally, PATCHCANARY first looks up CVE disclosures for the target
program, P, and finds those that have a source patch file linked. Next, we create
a set, F, of functions that are modified in the patch file. This is necessary for
knowing where to insert the monitors later. The next step is trigger inference,
which aims to determine what input(s) will trigger the vulnerability disclosed in
the CVE. This information is then used to generate a monitor that checks for the
given critical input(s), and reports when there was an attempted exploit. The
monitors are then inserted into the functions that were patched, and compilation
continues to produce an augmented, patched program, P’.

3.2 Patch Lookup

The first step in PATCHCANARY’s workflow is to find a patch for a CVE that
is of interest for monitoring. Given a target CVE, PATCHCANARY looks up
details assigned to it using cve-search |1], which allows for efficient, local queries



6 R. Williams et al.

Table 1. Parameters for Gathering Target Vulnerabilities

Parameter Description

cvss >= 7.0
exploitabilityScore >= 8.0

impactScore >= 6.0
vulnerable_product —(cpe:2.3:0 A cpe:2.3:h)
access.vector NETWORK
access.complexity LOw
access.authentication NONE

references Includes URLs

for known CVEs. PATCHCANARY then parses the CVE data in the output of
cve-search for CVEs that have patches linked through version control systems
(e.g., GitHub), pulls the patches via their commit hash, and saves them locally.
For our evaluation, we filtered for CVEs that had a higher risk associated with
exploitation (e.g., buffer overflows, remote code execution, etc.). This is found
using the exploitability metrics provided by NIST vulnerability scoring system
(CVSS). We also only look at patches for codebases that are C/C++-based as
our tool is built on Clang. This resulted in targeting a total of 108 CVEs across
75 applications. The details of the query parameters used in cve-search are
shown in Table[Il After obtaining the patch associated with the target program,
PATCHCANARY parses the patch file to find which functions are modified in the
patch, and saves them in a set, F, which is used in the subsequent steps.

3.3 Patch Semantic Parsing

This step involves parsing the pre-patch and post-patch source files, generating
their Abstract Syntax Trees (ASTs), and computing the differences between
these ASTSs to find the constraints introduced by the patch. The process begins
by parsing both the pre-patch and post-patch versions of the source code to
generate their respective ASTs. The ASTs provide a structural representation
of the source code, highlighting the syntactic elements and their hierarchical
relationships. By comparing the pre-patch and post-patch ASTs, we can compute
the differences (diffs) that pertain to the exact changes introduced by the patch.
Once the AST diffs are computed, we analyze these differences to extract the
relevant constraints. These constraints typically correspond to new conditions,
type modifications, or other logical changes added by the patch. By encoding
these constraints symbolically using a tool such as Z3, we can formalize the
logical conditions that the patch introduces. Next, the extracted constraints are
used to generate the necessary monitoring conditions that will be inserted into
the patched functions.



Enhancing Network Security through Vulnerability Monitoring 7

Algorithm 1 Patch Monitor Generation
Input: Source of pre-patch and post-patch source files

Output: Binary with inserted monitors

1: Input: ASTpre, ASTpost > Abstract Syntax Trees
2: diffs + computeDiffs(ASTyre, ASTpost)

3: for each diff in diffs do

4 if diff.type == ConditionAddition then

5 condition < extractCondition(diff)

6: if condition == semanticlnvariant(ASTpre, ASTpost) then
7 monitor < generateDirectMonitor(condition)

8 else

9: inverse < generatelnverseCondition(condition)

10: monitor < generateMonitor(inverse)

11: else if diff.type == TypeModification then
12: typeChange + extractTypeChange(diff)
13: monitor < generate TypeMonitor(typeChange)
14: else if diff.type == Modification then
15: modi fication < extractModification(diff)
16: monitor < generateModificationMonitor(modi fication)
17: else
18: diff < "<unknown>"
19: insertMonitor(monitor, diff.location)

20: compileBinaryWithMonitors()

3.4 Monitor Generation

The monitor generation phase involves creating runtime monitors that can detect
potential exploit attempts of the patched vulnerabilities. Our approach leverages
symbolic execution to derive the necessary conditions from the patched code. The
encoding of the vulnerability condition as constraints is then passed to the Z3
theorem prover to find a set of input values that satisfy these constraints.

Symbolic Encoding. For each identified change, we encode the corresponding
patched code segment as symbolic constraints using a symbolic execution engine.
These constraints represent the logical conditions introduced by the patch.

Condition Generation. Based on the symbolic constraints, we generate the
conditions that need to be monitored at runtime. If a condition addition is
detected, we generate both the direct condition and its inverse. For type modi-
fications and other changes, appropriate monitoring conditions are derived.

When the theorem prover returns satisfiable, we can then return the con-
straints and concrete value(s) that were used. This ensures that the runtime
monitors are precise and can effectively detect attempts to exploit the vulnera-

bilities addressed by the patches. The steps of monitor generation are outlined
in Algorithm



8 R. Williams et al.

1 int test(int a, int b)
1 int test(int int b) °
in est(int a, in
’ 3 if (a < b)
2 { . P
3 return a + b;
5 return a + b;
4}
6 }
7 }

Fig. 2. Example of a simple patch that will be detected via the semantic parsing and
used as conditions in the monitor.

To illustrate this process, consider the example in Figure |2l In this exam-
ple, the patch introduces a new condition: if (a < b). The condition (a < b)
is encoded as a symbolic constraint using Z3. The constraint represents the
logical condition added by the patch. Both the direct condition and its in-
verse are generated from the symbolic constraint. DirectCondition : (< a b),
InverseCondition : (> a b). The genrated inverse monitor is now able to detect
an attempted exploit of the patched vulnerability, and is ready for insertion into
the patched function.

3.5 Monitor Insertion

Finally, given a program P, the set of target functions, F, and the monitors, M,
PATCHCANARY is able to insert monitors inside the functions modified in the
patch during compilation time, outputting an augmented, patched program, P’.
When inserting the augmented source patch for P that takes input y, we require
that P’ satisfies the following property: Yy, P(y) = P’(y). That is, the monitors
we insert do not alter the control flow of the program. Instead, they passively
monitor, and report alerts to the administrator.

Once we have generated the necessary monitors, M, PATCHCANARY parses
the AST of the program using our Clang checker. PATCHCANARY’s compiler
passes statically traverse the AST and find the target functions, f € P, along
with their respective monitor(s), My, that we wish to insert. Once it has the
location of those function definitions, PATCHCANARY uses the program’s AST
to find an appropriate insertion point within the function, Py, for the monitor
code generated in the previous step.

4 Implementation

Our PATCHCANARY prototype is built as a set of Clang compiler passes, along
with a standalone, LibTooling-based tool for a simpler user interface. The mon-
itor generation component utilizes Z3 38| for finding the conditions that trigger
a vulnerability. Our patch lookup component is based on cve-search [1], which
allows us to perform more complex queries on CVEs from the NVD database
locally. Building PATCHCANARY on Clang and LibTooling [4] provides us access



Enhancing Network Security through Vulnerability Monitoring 9

to a powerful set of APIs for analyzing and modifying source files in the C lan-
guage family. Using this framework allows us to create PATCHCANARY without
the need for re-implementing various functionalities like all our operations on a
program’s AST.

5 Evaluation

To evaluate the prototype of PATCHCANARY, we conducted: (i) an evaluation on
the completeness of monitor generation (§5.2)); (i) tests to show the correctness
and usability of the augmented patches generated including a real-world use case
deployed on a production system (§5.3); (4ii) performance measurements to show
the practicality of using PATCHCANARY (§5.4)), and (iv) case studies detailing
monitor generation for specific CVEs (§5.5)).

5.1 Experimental Setup

For our evaluation, we aimed to select a diverse and representative set of vulner-
abilities. We focused on the C language family due to its widespread use and the
high prevalence of vulnerabilities in C-based applications. Our dataset was auto-
matically collected from the National Vulnerability Database (NVD) [5], where
we filtered out vulnerabilities that require specific devices to trigger as well as
those whose behaviors cannot be directly observed. We further concentrated our
dataset based on Common Weakness Enumerations (CWEs). The focus was on
CWEs with well-known triggers, ensuring a meaningful and consistent evaluation
of PATCHCANARY’s effectiveness. From this, we selected 108 real-world vulner-
abilities to test the efficacy of PATCHCANARY. The vulnerabilities are from 75
applications which include media encoding libraries, messaging systems, PHP,
and the Linux kernel.

All experiments below were performed on an Ubuntu 20.04 workstation with
a quad-core Intel i7 @ 3.00GHz and 16GB of RAM.

5.2 Monitor Generation Completeness

To evaluate the effectiveness of our monitor generation process, we analyzed the
completeness of the monitors generated for the 108 example CVEs. We focused
on two key metrics:

— Successful Monitors: Monitors that were fully generated and able to detect
potential exploit attempts;

— Unknown Monitors: Monitors that were partially generated or incomplete
where a condition and/or variable to monitor could not be inferred.

We collected data on the number of successful and unknown monitors for each
instrumented file. Across the 108 vulnerable projects targeted, PATCHCANARY
generated a total of 782 monitors. This is because we consider a monitor to be



10 R. Williams et al.

Trends of Successful vs Unknown Monitors by Total Monitors

140 o
successful_monitors

unknown_monitors

120 4

100 4

Generated Monitors.

404

[0.0, 10.0) [10.0, 20.0) [20.0, 30.0) [30.0, 40.0) [40.0, 50.0) [50.0, 60.0) [60.0, 70.0) [70.0, inf)
Total Monitors Group

Fig. 3. Trends of successful versus unknown monitors grouped by the number of moni-
tors needed for a given patch. E.g., for a CVE that required 100+ monitors for a patch,
we have 9 cases where we are unsuccessful in generating the given monitor.

each inserted code block that detects a given pattern. In the case of a simple
patch, we may see only one monitor; whereas a more complex one may have hun-
dreds. Of the 782 total monitors, 750 of them were complete and the remaining
32 were unable to be inferred. That is, PATCHCANARY was able to generate
source-level monitors for 95.9% of the target CVEs. The overall distribution of
successful and unknown monitors as well as their relation to patch complexity
is shown in Figure

5.3 Augmented Patch Correctness

For all of the CVEs that we evaluated against, we require an evaluation on
the efficacy of the augmented patches. The program that is now patched with
monitoring functionality, P’, must meet the following two properties: (i) any
triggers that the original patch would defend against must remain unmodified;
and () when an input is passed that would otherwise trigger the vulnerability,
the monitor must report the blocked attempt.

To test these properties, we compiled all of our codebases with the augmented
patches, P’. Next, we manually verified that the unpatched codebase, P, was
indeed exploitable with the triggering inputs. We then took the known inputs
that trigger the given CVEs for each target, and manually attempted to trigger
the vulnerability in P’. We consider an augmented patch correct only when
these tests are passed. In all of the test cases where a monitor was generated,
the vulnerability described in the CVE was no longer exploitable, and on each



Enhancing Network Security through Vulnerability Monitoring 11

of the attempts, a report was logged from the monitors. Thus, our evaluation
found that all generated patches are correct.

To illustrate real-world efficacy, we compiled a patched version of OpenSSH
where we monitored the functions modified for the CVE-2021-28041 patch. We
ran ssh-agent on a developer workstation for two weeks without any reported
errors or issues from the users. Over the course of this two week-long experiment,
we ran ssh-agent with various keys and agent forwarding, to attempt to exercise
as many code paths as a typical user might, and show that PATCHCANARY does
not inadvertently introduce any new bugs. While we do not claim that this test
is complete in that it covers all execution paths in the binary, it does provide
evidence of the usability of PATCHCANARY on production software.

5.4 Performance Evaluation

Macro-Performance Tests For our 108 evaluation targets, we measured the
compile-time overhead of using PATCHCANARY. Because PATCHCANARY is built
on Clang to provide source-level transformations, the incurred overhead is con-
fined to the compilation stages. The monitors that we insert are currently simple
checks (value, range, type, etc.) and do not impact the runtime of the target
program. Runtime would see a performance degradation, however, if we were to
insert complex monitors throughout the target program. In the case of PATCH-
CANARY, though, we are only inserting monitors which perform passive report-
ing, and do not alter the control flow of the system. On average, the time for
monitor generation and insertion across all of our tests was 712 milliseconds. The
distribution of the compile-time overhead measurements are shown in Figure [4

Runtime Performance Tests For this test, we took each of our codebases and
manually triggered each of the CVEs we evaluated. This was done both with the
regular patched program, P, and that with augmented patches, P’. We mea-
sured the time it took for each respective codebase to handle the vulnerability-
triggering input, with the goal of determining the overhead incurred by PATCH-
CANARY’s monitoring functionality being invoked. On average, PATCHCANARY
imposed an additional 0.75us of runtime. It is worth noting, however, that this
overhead incurred is primarily due to PATCHCANARY’s monitors writing out
alerts to log files, which is extra I/O operations. In the case of non-malicious
input being passed, there is no extra overhead incurred as PATCHCANARY’s
monitors are never triggered.

5.5 Case Studies

We have shown at a high-level how PATCHCANARY automates the process of
monitor generation (see . Next, we provide two case studies for selected CVEs
to illustrate in more detail how PATCHCANARY works. Here, we cover an example
from an instance where PATCHCANARY is able to fully generate a monitor, and
one where some component of the monitor could not be inferred, thus the monitor
could not be generated.



12 R. Williams et al.

Compile-time of PatchCanary

—— Mean: 712.09 ms

Projects

0 1000 2000 3000 4000
Milliseconds

Fig. 4. Time for PATCHCANARY to generate and insert monitors.

FFmpeg (CVE-2020-12284) For this instance of generating a monitor for
CVE-2020-12284, PATCHCANARY was able to fully automate the process. That
is, PATCHCANARY was able to determine the target variable and its value to mon-
itor for, as well as the constraint on the value that would trigger the vulnerability.
The necessary constraints for triggering the vulnerability were inferred from the
diff of the ASTs before and after applying the patch. When parsing the respec-
tive ASTs, PATCHCANARY found that the function cbs_jpeg_split_fragment
had a modification (addition type) that checked the length of a variable. This
missing length check from the original code is what caused the heap-based buffer
overflow vulnerability outlined in the CVE. PATCHCANARY was able to auto-
matically generate a monitor that would check the length of the variable, and
log an alert if the length was greater than the constraint.

Linux Kernel (CVE-2017-13715) When running PATCHCANARY on CVE-
2017-13715, the monitor generation was semi-automated. That is, PATCHCA-
NARY was only able to determine where the modifications happened in the
codebase, but was unable to infer the necessary constraints for the monitor.
The __skb_flow_dissect function was properly identified as the target func-
tion to monitor, but the modifications to the function were unable to be han-
dled by PATCHCANARY. The modifications consisted of replacing the statement
return true with goto out_bad, which is a pattern we were unable to generate
the appropriate constraints for automatically.



Enhancing Network Security through Vulnerability Monitoring 13
6 Limitations and Future Work

While our approach to monitor generation for patched code introduces significant
improvements in detecting potential exploit attempts, there are several limita-
tions that need to be addressed. First, the reliance on symbolic execution and
constraint solvers, such as Z3, can introduce performance overhead, especially
for large and complex codebases. This overhead can affect both the compila-
tion time and the runtime performance of the instrumented binaries. Second,
our current method assumes that the differences between pre-patch and post-
patch versions can be effectively captured and encoded as symbolic constraints.
However, certain subtle changes or complex logical conditions may not be fully
represented, potentially leading to incomplete monitoring coverage.

We envision PATCHCANARY to be most useful in a community-driven way,
much like how YARA signatures work, where signatures are crowdsourced and
shared among users [6]. The key insight here is that independent analysts can
contribute patches with monitors to our open source project that can then be
used by other users in their organizations.

Techniques from the domain of automated program repair can also be used
in conjunction with PATCHCANARY. While orthogonally related, a useful future
work may be to use PATCHCANARY to augment patches that are automatically-
generated or synthesized to not only provide monitoring, but to show that the
patch is actively mitigating a threat. To the best of our knowledge, there is
currently no standard way of measuring the efficacy of security patches. Using
PATCHCANARY, it would be possible to measure every exploit attempt for a
specific vulnerability, giving system administrators a measurable indicator that
the patches they applied are actively working in their described way.

7 Related Work

In this section, we briefly survey previous related research. We start by look-
ing at previous research in detecting network attacks and lateral movement in
particular, and then continue by surveying research on program patching.

7.1 Attack Detection Research

Intrusion Detection. Intrusion detection techniques generally fall into two
main categories: misuse-based and anomaly-based techniques. Misuse-based tech-
niques [11})33}/39,|45[52] focus on learning what known attacks look like, and
identifying attacks with the same characteristics in the future. Misuse-based
techniques range from building signatures of known attacks [45}/52] to leverag-
ing machine learning to identify similar attacks [33]. Anomaly detection tech-
niques [12}[13}/34] focus on learning what the normal activity on a network looks
like and flag anomalies as potential attacks. More recently, research in intru-
sion detection has started focusing on specific types of attacks, developing more



14 R. Williams et al.

specialized systems, for example to detect web-based attacks |31], botnet infec-
tions [22}|23], or malicious file downloads [401/43./44]. Compared to previous work
in this domain, PATCHCANARY is different because it monitors inputs targeting
patched vulnerabilities.

Alert Correlation. Intrusion detection systems are designed to provide infor-
mation about a single attack, but modern attacks usually unfold across a number
of steps [46]. The field of alert correlation [15,/51] focuses on analyzing the alerts
intrusion detection systems, and provide higher-level information on attempted
intrusions. A number of approaches have been proposed to provide effective alert
correlation |15427,/29,/50}/51].

Lateral Movement Research. Despite the importance of lateral movement
attacks, the research in this space is very limited. Ho et al. [25] study lateral
phishing, a type of lateral movement in which attackers progressively compromise
machines in a corporate setting by sending spearphishing emails from an initial
compromised account to further the breach. Fawaz et al. [19] propose a system
that builds a graph from the network connection between hosts in a network
to detect lateral movement attacks; and, Latte [35] focuses on a graph-based
representation to model a network for detecting lateral movement attacks. In
this paper, we take an alternative approach to this existing research [42,48|, and
propose the first monitor-based system that can detect an attacker within an
organization who is trying to exploit known vulnerabilities as part of a typical
lateral movement attempt.

7.2 Program Patching

The challenging task of program patching and modification has been extensively
studied [24}26}28./56}/59]. For example, BinSurgeon [20], and AutoFix-E [55] al-
low users to write patches using templates or source code annotations. Duan, et
al. [17] proposed OSSPATCHER, which patches vulnerable open source mobile
applications with source patches. The work on honey-patches [8] presented a way
to reformulate security patches in a way that misleads or frustrates potential at-
tackers. Furthermore, techniques in the area of program repair [21}/36,/41}|57]
seek to minimize user effort to efficiently fix bugs in software. Other tools work
assume that patches are available publicly, or from the analyst [2,|9,/14]. Binary-
rewriting [10,/18,[531/58] and hot-patching at runtime [9,[14] are also viable patch-
ing techniques; however, we focus on precisely targeting individual functions that
can be monitored to catch early indicators of compromise. These techniques are
solely concerned with applying a fix to a program, while PATCHCANARY’s focus
is on monitoring the functions those patches modified.

8 Conclusion

In this paper, we propose the idea that monitoring even attempted exploits
against patched vulnerabilities provides invaluable information for revealing the
presence of an attacker in an organization, and we introduce PATCHCANARY,



Enhancing Network Security through Vulnerability Monitoring 15

a framework for augmenting source patches to monitor for early indicators of
compromise. By specifically targeting known-vulnerable functions from CVE
disclosures, PATCHCANARY is able to precisely inject monitors that watch for
specific data flows to the functions that were modified in the patch. To allow
vulnerability patching to become a powerful contributor to the detection of lat-
eral movement attacks, we propose the novel idea of “patch and monitor” as
an alternative to the traditional mindset of “patch and move on.” Evaluation
on 75 real-world programs shows that PATCHCANARY is able to automatically
augment source patches for 95.9% of the target vulnerable paths to monitor for
potentially malicious input while incurring minimal overhead.

References

1. cve-search - a tool to perform local searches for known vulnerabilities (Nov 2021),
https://github.com/cve-search/cve-search

2. kpatch (Oct 2021), https://github.com/dynup/kpatch

3. Shodan (Jan 2021), https://www.shodan.io/

4. Libtooling is a library to support writing standalone tools based on clang. (2022),
https://clang.llvm.org/docs/LibTooling.html

5. The mission of the cve program is to identify, define, and catalog publicly disclosed
cybersecurity vulnerabilities. (Oct 2022), http://cve.mitre.org

6. Yara - the pattern matching swiss knife for malware researchers (Jun 2022), http:
//virustotal.github.io/yara/

7. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection tech-
niques. Journal of Network and Computer Applications 60, 19-31 (2016)

8. Araujo, F., Hamlen, K.W., Biedermann, S., Katzenbeisser, S.: From patches to
honey-patches: Lightweight attacker misdirection, deception, and disinformation.
In: Proceedings of the 2014 ACM SIGSAC conference on computer and communi-
cations security. pp. 942-953 (2014)

9. Arnold, J., Kaashoek, M.F.: Ksplice: Automatic rebootless kernel updates. In:
Proceedings of the 4th ACM European conference on Computer systems. pp. 187—
198 (2009)

10. Arras, P.A., Andronidis, A., Pina, L., Mituzas, K., Shu, Q., Grumberg, D., Cadar,
C.: Sabre: load-time selective binary rewriting. International Journal on Software
Tools for Technology Transfer pp. 1-19 (2022)

11. Barbara, D., Wu, N., Jajodia, S.: Detecting novel network intrusions using bayes
estimators. In: Proceedings of the 2001 SIAM International Conference on Data
Mining. pp. 1-17. SIAM (2001)

12. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection:
methods, systems and tools. Ieee communications surveys & tutorials 16(1), 303—
336 (2013)

13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM com-
puting surveys (CSUR) 41(3), 1-58 (2009)

14. Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel
live patching. In: 26th {USENIX} Security Symposium ({USENIX} Security 17).
pp. 1253-1270 (2017)

15. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection
framework. In: IEEE Symposium on Security and Privacy (2002)


https://github.com/cve-search/cve-search
https://github.com/dynup/kpatch
https://www.shodan.io/
https://clang.llvm.org/docs/LibTooling.html
http://cve.mitre.org
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/

16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

R. Williams et al.

DeGonia, T.: Cyber kill chain model and framework explained (Mar
2020), https://cybersecurity.att.com/blogs/security-essentials/
the-internal-cyber-kill-chain-model

Duan, R., Bijlani, A., Ji, Y., Alrawi, O., Xiong, Y., Ike, M., Saltaformaggio, B.,
Lee, W.: Automating patching of vulnerable open-source software versions in ap-
plication binaries. In: NDSS (2019)

Duck, G.J., Gao, X., Roychoudhury, A.: Binary rewriting without control flow
recovery. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 151-163 (2020)

Fawaz, A., Bohara, A., Cheh, C., Sanders, W.H.: Lateral movement detection using
distributed data fusion. In: 2016 IEEE 35th Symposium on Reliable Distributed
Systems (SRDS). pp. 21-30. IEEE (2016)

Friedman, S.E., Musliner, D.J.: Automatically repairing stripped executables with
cfg microsurgery. In: 2015 IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshops. pp. 102-107. IEEE (2015)

Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commu-
nications of the ACM 62(12), 56-65 (2019)

Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol-and structure-independent botnet detection (2008)

Gu, G., Porras, P.A., Yegneswaran, V., Fong, M.\W., Lee, W.: Bothunter: Detect-
ing malware infection through ids-driven dialog correlation. In: USENIX Security
Symposium (2007)

Heinricher, A., Williams, R., Klingbeil, A., Jordan, A.: Weldr: fusing binaries
for simplified analysis. In: Proceedings of the 10th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis. pp. 25-30 (2021)

Ho, G., Cidon, A., Gavish, L., Schweighauser, M., Paxson, V., Savage, S., Voelker,
G.M., Wagner, D.: Detecting and characterizing lateral phishing at scale. In: 28th
USENIX Security Symposium (USENIX Security 19). pp. 1273-1290 (2019)
Huang, Z., Lie, D., Tan, G., Jaeger, T.: Using safety properties to generate vul-
nerability patches. In: 2019 IEEE Symposium on Security and Privacy (SP). pp.
539-554. IEEE (2019)

Janakiraman, R., Waldvogel, M., Zhang, Q.: Indra: A peer-to-peer approach to
network intrusion detection and prevention. In: WET ICE (2003)

Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping program repair space
with existing patches and similar code. In: Proceedings of the 27th ACM SIGSOFT
international symposium on software testing and analysis. pp. 298-309 (2018)
Kannadiga, P., Zulkernine, M.: Didma: A distributed intrusion detection system
using mobile agents. In: SNPD-SAWN (2005)

Kim, B.C., Chen, P.Y., Mukhopadhyay, T.: The effect of liability and patch release
on software security: The monopoly case. Production and Operations Management
20(4), 603-617 (2011)

Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2003)

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study
of anomaly detection schemes in network intrusion detection. In: Proceedings of
the 2003 STAM international conference on data mining. pp. 25-36. STAM (2003)
Lee, W., Stolfo, S.: Data mining approaches for intrusion detection (1998)

Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In:
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001. pp. 130—
143. IEEE (2000)


https://cybersecurity.att.com/blogs/security-essentials/the-internal-cyber-kill-chain-model
https://cybersecurity.att.com/blogs/security-essentials/the-internal-cyber-kill-chain-model

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Enhancing Network Security through Vulnerability Monitoring 17

Liu, Q., Stokes, J.W., Mead, R., Burrell, T., Hellen, I., Lambert, J., Marochko, A.,
Cui, W.: Latte: Large-scale lateral movement detection. In: MILCOM 2018-2018
IEEE Military Communications Conference (MILCOM). pp. 1-6. IEEE (2018)
Long, F., Rinard, M.: Automatic patch generation by learning correct code. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. pp. 298-312 (2016)

Mitre: Mitre ATT&CK. https://attack.mitre.org/

Moura, L.d., Bjgrner, N.: Z3: An efficient smt solver. In: International conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 337-340.
Springer (2008)

Mukherjee, B., Heberlein, L.T., Levitt, K.N.: Network intrusion detection. IEEE
network 8(3), 26-41 (1994)

Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium: Tera-scale graph
mining and inference for malware detection. In: STAM International Conference on
Data Mining (2011)

Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair
via semantic analysis. In: 2013 35th International Conference on Software Engi-
neering (ICSE). pp. 772-781. IEEE (2013)

Noureddine, M.A., Fawaz, A., Sanders, W.H., Bagar, T.: A game-theoretic ap-
proach to respond to attacker lateral movement. In: International Conference on
Decision and Game Theory for Security. pp. 294-313. Springer (2016)
Rahbarinia, B., Balduzzi, M., Perdisci, R.: Real-time detection of malware down-
loads via large-scale url— > file— > machine graph mining. In: ACM ASIA Con-
ference on Computer and Communications Security (ASIACCS) (2016)

Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N.: Camp: Content-
agnostic malware protection. In: ISOC Network and Distributed Systems Security
Symposium (NDSS) (2013)

Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: Lisa.
vol. 99, pp. 229-238 (1999)

Shen, Y., Stringhini, G.: Attack2vec: Leveraging temporal word embeddings to
understand the evolution of cyberattacks. In: USENIX Security Symposium. pp.
905-921 (2019)

Steinwart, I., Hush, D., Scovel, C.: A classification framework for anomaly detec-
tion. Journal of Machine Learning Research 6(2) (2005)

Tian, Z., Shi, W., Wang, Y., Zhu, C., Du, X., Su, S., Sun, Y., Guizani, N.: Real-
time lateral movement detection based on evidence reasoning network for edge
computing environment. IEEE Transactions on Industrial Informatics 15(7), 4285—
4294 (2019)

Tripwire: The MITRE ATT&CK  Framework: Lateral = Movement.
https://www.tripwire.com/state-of-security/mitre-framework/
the-mitre-attck-framework-lateral-movement/

Valeur, F.,; Vigna, G., Kruegel, C., Kemmerer, R.A.: Comprehensive approach to
intrusion detection alert correlation. IEEE Transactions on dependable and secure
computing 1(3) (2004)

Vasilomanolakis, E., Karuppayah, S., Miithlh&user, M., Fischer, M.: Taxonomy and
survey of collaborative intrusion detection. ACM CSUR 47(4), 55 (2015)

Vigna, G., Kemmerer, R.A.: Netstat: A network-based intrusion detection ap-
proach. In: Proceedings 14th Annual Computer Security Applications Conference
(Cat. No. 98EX217). pp. 25-34. IEEE (1998)

Wang, R., Shoshitaishvili, Y., Bianchi, A., Machiry, A., Grosen, J., Grosen, P.,
Kruegel, C., Vigna, G.: Ramblr: Making reassembly great again. In: NDSS (2017)


https://attack.mitre.org/
https://www.tripwire.com/state-of-security/mitre-framework/the-mitre-attck-framework-lateral-movement/
https://www.tripwire.com/state-of-security/mitre-framework/the-mitre-attck-framework-lateral-movement/

18

54.

53.

56.

57.

58.

59.

R. Williams et al.

Wang, S., Wen, M., Chen, L., Yi, X., Mao, X.: How different is it between machine-
generated and developer-provided patches?: An empirical study on the correct
patches generated by automated program repair techniques. In: 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). pp. 1-12. IEEE (2019)

Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Auto-
mated fixing of programs with contracts. In: Proceedings of the 19th international
symposium on Software testing and analysis. pp. 61-72 (2010)

Williams, R., Ren, T., De Carli, L., Lu, L., Smith, G.: Guided feature identification
and removal for resource-constrained firmware. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31(2), 1-25 (2021)

Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Transactions on Software Engineering 42(8), 707-740 (2016)
Xie, J., Fu, X., Du, X., Luo, B., Guizani, M.: Autopatchdroid: A framework for
patching inter-app vulnerabilities in android application. In: 2017 IEEE Interna-
tional Conference on Communications (ICC). pp. 1-6. IEEE (2017)

Zhang, X., Zhang, Y., Li, J., Hu, Y., Li, H., Gu, D.: Embroidery: Patching vul-
nerable binary code of fragmentized android devices. In: 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp. 47-57. IEEE
(2017)



	Enhancing Network Security through Vulnerability Monitoring

